Thursday, July 20, 2017

Tualang Honey Boosts Antioxidant Activity, Protects Against Oxidative Stress

Dose-Response Effect of Tualang Honey on Postprandial Antioxidant Activity and Oxidative Stress in Female Athletes: A Pilot Study

J Altern Complement Med. 2017 Jul 14

OBJECTIVES:

Tualang honey (TH) contains antioxidants such as ascorbic acid, phenolic acids, and flavonoids that may be protective against oxidative stress of exercise. The aim of this study was to examine the postprandial antioxidant activity and oxidative stress after ingestion of high and low dosages of TH in female athletes.

MATERIALS AND METHODS:

Twenty female athletes (aged 21.3 [2.1] years; body weight [BW] 54.1 [5.7] kg) were randomly assigned into two groups and consumed either 1.5 g/kg BW TH (high honey; HH; n = 10) or 0.75 g/kg BW TH (low honey; LH; n = 10). Blood sample was collected at fasting and at 0.5, 1, 2, and 3 h after TH consumption. Plasma was analyzed for total phenolic content (TPC), antioxidant activity (ferric reducing antioxidant power [FRAP]), and oxidative stress biomarkers (malondialdehyde [MDA] and reactive oxygen species [ROS]).

RESULTS:

The 3-h area under the curve (AUC) for MDA was significantly lower in the LH group compared with HH group, suggesting less oxidative stress in the LH group. However, the AUCs for TPC, FRAP, and ROS were not affected by the dosages. The concentrations of TPC and FRAP increased from baseline to 2 and 1 h after TH consumption, respectively, and concentrations returned toward baseline at 3 h in both LH and HH groups. MDA concentration significantly decreased (p < 0.05) from baseline to 2 h and significantly increased from 2 to 3 h in the HH group. Meanwhile, ROS levels increased significantly from 0.5 to 3 h in the HH group. The LH group showed similar trends as the HH group for MDA and ROS; however, this was not significant.

CONCLUSIONS:

The consumption of high and low doses of TH demonstrated a comparable response in increasing antioxidant activity and suppressing oxidative stress in female athletes. The time-course effect of TH that provides optimal antioxidant activity and oxidative stress protection was between 1 and 2 h after its consumption.

Wednesday, July 19, 2017

Manuka Better Than Mutifloral Honey in Treating Horse Wounds

Comparison of the effects of topical application of UMF20 and UMF5 manuka honey with a generic multifloral honey on wound healing variables in an uncontaminated surgical equine distal limb wound model

Aust Vet J. 2017 Jul 17. doi: 10.1111/avj.12616. [Epub ahead of print]

OBJECTIVE:

To compare the effect of application of manuka honey with unique manuka factor (UMF) 5 or 20 with a generic multifloral honey on equine wound healing variables.

METHODS:

Two full-thickness skin wounds (2.5 × 2.5 cm) were created on the metatarsus of both hindlimbs of eight Standardbred horses. The wounds on each horse were assigned to 1 of 4 treatments: UMF20 (UMF20) and UMF5 (UMF5) manuka honey; generic multifloral honey (GH); and a saline control. Bandages were changed daily for 12 days, after which treatment was stopped and the bandages were removed. Wound area was measured on day 1, then weekly until day 42. Overall wound healing rate (cm2 /day) and time to complete healing were recorded.

RESULTS:

There was no difference in wound area for any of the treatments on any measurement day except for day 21, where the mean wound area for wounds treated with UMF20 was smaller than the mean wound area for the UMF5-treated wounds (P = 0.031). There was no difference in mean (± SE) overall healing rate (cm2 /day) among the treatment groups. There were differences in mean (± SE) days to complete healing. Wounds treated with UMF20 healed faster than wounds treated with GH (P = 0.02) and control wounds (P = 0.01).

CONCLUSIONS:

Treatment of wounds with UMF20 reduced overall wound healing time compared with wounds treated with GH and control wounds. However, using this model the difference in the overall time to complete healing was small.

Tuesday, July 18, 2017

Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

Front Pharmacol. 2017 Jun 28;8:412

Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized.

Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides.

In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities.

Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects.

Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2.

Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols.

Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.


Monday, July 17, 2017

Using Honey to Ease Seasonal Allergies

Stuff, 7/14/2017

Dr Shaun Holt, who holds pharmacy and medicine degrees and lectures at Victoria University of Wellington, has long believed in the power of honey.

He co-founded Wellington's HoneyLab, which performs extensive research on bees and develops medical products from the insect. He has taken on the principal investigator role in more than 50 clinical trials.

While Holt has yet to explore honey's potential affect on seasonal allergies and asthma, he said it's a subject he's had a keen eye on for "a while now".

"It makes sense. In theory it should help," he says.

"It's similar to immunisation therapy. Allergy experts will give you a pollen injection but it's just expensive."

Holt said by consuming the bee byproduct, people were "basically building an immunity" by exposing the body to pollens without inhaling it and suffering symptoms.

Dr Shaun Holt, co-founder and scientist at Honeylab, says eating honey could potentially help build up an immunity to pollen without suffering symptoms.

And if patients were to visit him in regards to seasonal allergies, Holt said he would tell them to "give it a go".

"If it helps you, great. If not, then you just had a spoonful of honey a day."...

Sunday, July 16, 2017

Propolis for (Nappy) Diaper Rash

New Zealand Herald

Propolis is a substance collected by honeybees that can be used as a substitute for zinc oxide to protect and heal the delicate skin of baby's bottom. Zinc Oxide is often used in creams of this type but can be harmful with long-term use. Propolis has proven antibacterial and antifungal properties that can help to resolve resistant baby skin problems like fungal infections and thrush.

Saturday, July 15, 2017

Propolis resin from trees antibacterial, antifungal


The Taos News, 7/14/2017

Propolis is a dark brown to red sticky resin that honeybees collect from a variety of trees - including cottonwood, aspen and birch - for use in the beehive. It used to be thought that this resin was used just to seal the cracks and holes in the hive, but it has more recently been discovered that propolis is used by the bees to prevent the growth of mold and bacteria and inhibit the presence of parasites.

People use propolis as a medicine, and research shows that it indeed has antibacterial, antifungal and even antiviral properties. The raw propolis is a bit difficult to use, as it is a sticky lump of resin, but if you can warm it slightly, small pieces can be pulled off and placed into a tooth cavity to create a temporary filling that both seals out the air that causes discomfort and has antiseptic qualities that can help prevent infection.

One of my favorite ways to use this fascinating product from our honeybee friends is as a remedy for the throat. I like to combine an extract of the resin with licorice root, yerba del manzo root and tea tree oil to make a throat spray. This blend has the effect of numbing the pain of the sore tissues and being astringent, antiseptic and antiviral...

Friday, July 14, 2017

Honey, Propolis Component Useful in Disease Management Induced by Toxic Agents


Protective Effects of Chrysin Against Drugs and Toxic Agents

Dose Response. 2017 Jun 23;15(2):1559325817711782

ISSUES:

Polyphenolic compounds, especially flavonoids, are known as the most common chemical class of phytochemicals, which possess a multiple range of health-promoting effects. Flavonoids are ubiquitous in nature. They are also present in food, providing an essential link between diet and prevention of several diseases.

APPROACH:

Chrysin (CH), a natural flavonoid, was commonly found in propolis and honey and traditionally used in herbal medicine. A growing body of scientific evidence has shown that CH possesses protective effects against toxic agents in various animal tissues, including brain, heart, liver, kidney, and lung.

KEY FINDINGS:

This study found that CH may be effective in disease management induced by toxic agents. However, due to the lack of information on human, further studies are needed to determine the efficacy of CH as an antidote agent in human.

CONCLUSION:

The present article aimed to critically review the available literature data regarding the protective effects of CH against toxic agent-induced toxicities as well as its possible mechanisms.

Thursday, July 13, 2017

Chestnut, Cedar, and Pine Honey Kill Breast Cancer Cells

Anatolian honey is not only sweet but can also protect from breast cancer: Elixir for women from artemis to present

IUBMB Life. 2017 Jul 10

Natural products with bioactive components are widely studied on various cancer cell lines for their possible cytotoxic effects, recently. Among these products, honey stands out as a valuable bee product containing many active phenolic compounds and flavonoids.

Numerous types of multifloral honey and honeydew honey are produced in Turkey owing to its abundant vegetation. Therefore, in this study, we investigated the cytotoxic effects of particular tree-originated honeys from chestnut, cedar, pine, and multifloral honey on cell lines representing different types of the most common cancer of women, breast cancer, MCF7, SKBR3, and MDAMB-231, and fibrocystic breast epithelial cell line, MCF10A as a control.

All honey samples were analyzed biochemically. The dose- (1, 2.5, 5, 7.5, and 10 µg/mL) and time (24th, 48th, and 72nd hours)-dependent effects of ethanol/water solutions of the honey samples were scrutinized. Cell viability/cytotoxicity was evaluated by the water soluble tetrazolium Salt-1 (WST-1) method. Apoptotic status was detected by Annexin V-PI assay using FACSCalibur. The statistical analysis was performed using GraphPad Prism 6 and the clustering data analysis with the R programming language. The biochemical analyses of the honey samples showed that the tree-originated honey samples contained more total phenolic compounds than the multifloral honey.

Phenolic content of the honey types increases in order of multifloral, pine, cedar, and chestnut, respectively, which is compatible with their cytotoxic affectivity and dark color. In addition, the antioxidant capacity of the studied honey types was observed to increase in order of multifloral < pine < cedar ≅ chestnut. According to the WST-1 data, chestnut honey induced cytotoxicity over 50% on all the cell lines, including the control MCF10A cells, even with low doses (honey concentrations starting from 1 µg/mL) (P < 0.0001). Similarly, Cedar honey was observed to be the second most effective honey in this study. Cedar honey, with the dose of 1 µg/mL, was detected statistically highly significant on MCF10A, MCF7, and SKBR3.

In contrast, pine honey showed dramatically significant cytotoxicity only on the MDAMB 231 cells with a 1 µg/mL dose at the same time point (P = 0.018). While pine honey caused an anticancer effect on the MCF-7 and SKBR3 cancer cell lines with a 2.5-5 µg/mL dose (P < 0.0001), like cedar and chestnut honeys, it increased the viability of the MCF10A control cells with the doses of 2.5-5 µg/mL. It only showed cytotoxicity with higher doses (10 µg/mL) on the MCF10A cell line (P < 0.0001).

Moreover, we have observed that the multifloral and artificial honey samples were mostly ineffective or increased cell viability with the doses of 1-5 µg/mL. Apoptotic effects of the other honey samples on the MCF-7 cell line were found as chestnut> pine> cedar> multifloral in the Annexin V-propidium iodide (PI) analysis.

Chestnut, cedar, and pine honey displayed a remarkably cytotoxic effect on breast cancer cell lines, MCF7, SKBR3, and even on the most aggressive MDAMB 231, representing the triple negative breast cancer, which lacks of targeted anticancer therapy. The chestnut and cedar honeys stand out to be the most cytotoxic on all cell lines, while pine honey was found to be the least toxic on control cells with appropriate toxicity on the cancer cells.

Wednesday, July 12, 2017

Honey Eardrops Help Treat Recurrent Eczematous External Otitis

Treatment of Recurrent Eczematous External Otitis with Honey Eardrops: A Proof-of-Concept Study

Otolaryngol Head Neck Surg. 2017 Jul 1:194599817718782

Eczematous external otitis is a chronic inflammatory disease and often difficult to treat. Our objective was to investigate the clinical effect and in vitro antibacterial potential of medical honey eardrops as treatment of eczematous external otitis. In a prospective study, 15 patients diagnosed with recurrent eczematous external otitis were treated with medical honey eardrops for 2 weeks.

The following clinical outcomes were evaluated: visual analog scale of ear complaints, score of eczema, and eradication of bacterial infection. Furthermore, the antibacterial effect of honey eardrops against different bacterial strains was tested in vitro.

Treatment resulted in less discomfort and itching and decreased signs of eczema, with high patient satisfaction and without adverse reactions. Honey eardrops showed a strong in vitro inhibitory activity against all tested strains but did not eradicate Staphylococcus aureus infection in vivo.

The results of this preliminary study indicate a possible role of honey eardrops in eczematous ear disease.

Tuesday, July 11, 2017

Indian Propolis Has Anti-Alzheimer's Potential

Neuroprotective effect of Indian propolis in β-amyloid induced memory deficit: Impact on behavioral and biochemical parameters in rats

Biomed Pharmacother. 2017 Jul 4;93:543-553

The study aimed at the investigation of neuroprotective activity of macerated ethanolic extract of Indian propolis (MEEP) against β-Amyloid 25-35 (Aβ25-35) induced memory impairment in Alzheimer's disease. MEEP was administrated orally to Wistar rats at doses of 100, 200 and 300mg/kg. Behavioral performances were evaluated using morris water maze and radial arm maze. At the end of behavioral study, the brains were removed and antioxidant parameters and brain monoamines were estimated. Further acetylcholinesterase (AchE) inhibition and brain-derived neurotropic factor (BDNF) were evaluated. In addition hematological parameters and histopathological tests were also carried out.

In behavioral models, MEEP significantly (P < 0.05) reversed the cognitive impairment of β amyloid-induced rats. The antioxidant potential was significantly increased (P < 0.05) after administration of MEEP. Malondialdehyde levels were significantly (P < 0.01) decreased in brain homogenate after treatment with MEEP extract as compared with diseased control group (group III). MEEP showed dose-dependent AChE inhibition and increased the levels of brain monoamines (P < 0.05) as compared with group III. MEEP improved memory deficits by increasing BDNF in plasma (P < 0.05).

The study concludes that MEEP has anti-Alzheimer potential in rats through multiple mechanisms and further studies are ongoing for fractionation and biological screening.

Monday, July 10, 2017

Review of Use of Bee Venom and Propolis for Wound Healing


Wound healing: time to look for intelligent, 'natural' immunological approaches?


BMC Immunol. 2017 Jun 21;18(Suppl 1):23

There is now good evidence that cytokines and growth factors are key factors in tissue repair and often exert anti-infective activities. However, engineering such factors for global use, even in the most remote places, is not realistic. Instead, we propose to examine how such factors work and to evaluate the reparative tools generously provided by 'nature.'

We used two approaches to address these objectives. The first approach was to reappraise the internal capacity of the factors contributing the most to healing in the body, i.e., blood platelets. The second was to revisit natural agents such as whey proteins, (honey) bee venom and propolis. The platelet approach elucidates the inflammation spectrum from physiology to pathology, whereas milk and honey derivatives accelerate diabetic wound healing. Thus, this review aims at offering a fresh view of how wound healing can be addressed by natural means.

Sunday, July 09, 2017

Gelam Honey Helps Treat Eye Injuries

The Potential of Gelam Honey in Promoting the Proliferative Phase of Corneal Reepithelialization

Wounds. 2017 Jun 28

OBJECTIVE:

The aim of this study is to investigate the potential benefits of Gelam honey (GH) in promoting proliferation of ex vivo cor-neal epithelial cells (CECs) and its effects on the phenotypical features.

MATERIALS AND METHODS:

Corneal epithelial cells were isolated from the corneas of rabbits (n = 6). The optimal dose of GH for CEC proliferation in both basal medium (BM) and cornea medium (CM) was determined via MTT (3-[4, 5-dimethyl thiazolyl-2]-2, 5-diphenyl tetrazolium bro- mide) assay. Morphology, gene and protein expressions, and cell cycle analysis of CECs were evaluated via phase contrast microscopy, real- time polymerase chain reaction, immunocytochemistry, and ow cytometry, respectively.

RESULTS:

Corneal epithelial cells cultured in 0.0015% GH-supplemented media (BM + 0.0015% GH; CM + 0.0015% GH) demonstrated optimal proliferative capacity with normal polygonal- shaped morphology. Gelam honey potentiates cytokeratin 3 (CK3) gene expression in accordance with the cytoplasmic CK3 protein expression while retaining normal cell cycle of CECs.

CONCLUSION:

Culture media treated with 0.0015% GH increased CEC proliferation while preserving its phenotypical features. This study demonstrated the potential development of GH-based topical treatment for superficial corneal injury.

Saturday, July 08, 2017

Allergists Scramble to Deal with Venom Extract Shortage

Ventura County Star, 7/7/2017

Ventura County allergists say they've eased the sting of a shortage of an extract used to prevent severe allergic reactions to bees, hornets and wasps.

The extract invokes the hair of the dog theory, made of the venom of the very insect that triggers a person's allergies...

Friday, July 07, 2017

Manuka Honey Can Comprehensively Kill Common Pathogens Associated with Infected Wounds


Comprehensive In Situ Killing of Six Common Wound Pathogens With Manuka Honey Dressings Using a Modified AATCC-TM100

Wounds. 2017 Jun 28. pii: WNDS20170628-1

OBJECTIVE:

While Manuka honey in vitro is strongly antimicrobial, there have been, to the best of the authors' knowledge, no studies showing that dressings impregnated with Manuka honey can kill organisms in the dressing itself.

MATERIALS AND METHODS:

The investigators used the American Association of Textile Chemists and Colorists' 100 test methodology to compare honey-impregnated dressings with control dressings (without honey) on the ability to kill common wound pathogens. Organisms were chosen after a review of the causal organisms found in actual wound infections over a 12-month period in a busy outpatient wound clinic.

RESULTS:

Even when the dressings were challenged daily with further inoculated organisms, > 5-log reductions were routinely noted across a range of pathogens, including multiple drug-resistant species using dressings containing Manuka honey relative to the control.

CONCLUSIONS:

The results presented herein show that when well-characterized medical-grade Manuka honey is used in dressings (ie, a minimum of 400 mg methylglyoxal/kg) these dressings can comprehensively kill common wound pathogens associated with infected wounds.

OBJECTIVE:

While Manuka honey in vitro is strongly antimicrobial, there have been, to the best of the authors' knowledge, no studies showing that dressings impregnated with Manuka honey can kill organisms in the dressing itself.

MATERIALS AND METHODS:

The investigators used the American Association of Textile Chemists and Colorists' 100 test methodology to compare honey-impregnated dressings with control dressings (without honey) on the ability to kill common wound pathogens. Organisms were chosen after a review of the causal organisms found in actual wound infections over a 12-month period in a busy outpatient wound clinic.

RESULTS:

Even when the dressings were challenged daily with further inoculated organisms, > 5-log reductions were routinely noted across a range of pathogens, including multiple drug-resistant species using dressings containing Manuka honey relative to the control.

CONCLUSIONS:

The results presented herein show that when well-characterized medical-grade Manuka honey is used in dressings (ie, a minimum of 400 mg methylglyoxal/kg) these dressings can comprehensively kill common wound pathogens associated with infected wounds.

Thursday, July 06, 2017

Gelam Honey Promotes Corneal Healing

The Potential of Gelam Honey in Promoting the Proliferative Phase of Corneal Reepithelialization

Wounds. 2017 Jun 28. pii: WNDS20170628-2

OBJECTIVE:

The aim of this study is to investigate the potential bene ts of Gelam honey (GH) in promoting proliferation of ex vivo cor- neal epithelial cells (CECs) and its effects on the phenotypical features.

MATERIALS AND METHODS:

Corneal epithelial cells were isolated from the corneas of rabbits (n = 6). The optimal dose of GH for CEC proliferation in both basal medium (BM) and cornea medium (CM) was determined via MTT (3-[4, 5-dimethyl thiazolyl-2]-2, 5-diphenyl tetrazolium bro- mide) assay. Morphology, gene and protein expressions, and cell cycle analysis of CECs were evaluated via phase contrast microscopy, real- time polymerase chain reaction, immunocytochemistry, and ow cytom- etry, respectively.

RESULTS:

Corneal epithelial cells cultured in 0.0015% GH-supplemented media (BM + 0.0015% GH; CM + 0.0015% GH) demonstrated optimal proliferative capacity with normal polygonal- shaped morphology. Gelam honey potentiates cytokeratin 3 (CK3) gene expression in accordance with the cytoplasmic CK3 protein expression while retaining normal cell cycle of CECs.

CONCLUSION:

Culture media treated with 0.0015% GH increased CEC proliferation while preserving its phenotypical features. This study demonstrated the potential devel- opment of GH-based topical treatment for super cial corneal injury.